

Solving LPN Using Covering Codes

<u>Qian Guo</u>^{1,2} Thomas Johansson¹ Carl Löndahl¹

¹Dept. of Electrical and Information Technology, Lund University ²School of Computer Science, Fudan University

Outline

Introduction

The LPN Problem Motivation **Related Works**

2 A New Algorithm

Linear Approximation Using Covering Codes Subspace Hypothesis Testing

Results

Complexity Applications

4 Conclusions and Discussions

Outline

Introduction The LPN Problem Motivation **Related Works**

2 A New Algorithm

Results

4 Conclusions and Discussions

We have access to an oracle (LPN oracle):

The LPN oracle with parameters (k, η) :

- 1. Picks a secret **s** in \mathbb{Z}_2^k .
- 2. Randomly picks **r** from \mathbb{Z}_2^k .
- 3. Picks a 'noise' $e \leftarrow \text{Ber}_{\eta}$ (i.e. e = 0 w.p. 1η and 1 w.p. η).
- 4. Outputs the pair (**r**, $v = \langle \mathbf{r}, \mathbf{s} \rangle + \mathbf{e}$) as a sample.

We have access to an oracle (LPN oracle):

The LPN oracle with parameters (k, η) :

- 1. Picks a secret **s** in \mathbb{Z}_2^k .
- 2. Randomly picks **r** from \mathbb{Z}_2^k .
- 3. Picks a 'noise' $e \leftarrow \text{Ber}_{\eta}$ (i.e. e = 0 w.p. 1η and 1 w.p. η).
- 4. Outputs the pair (r, $v = \langle \mathbf{r}, \mathbf{s} \rangle + \mathbf{e}$) as a sample.

The goal (informal):

Find **s** after collecting enough samples.

- ► Fundamental in theory.
 - 1. Central problem in learning theory.
 - 2. A special case of the learning with errors (LWE) problem.
 - 3. A close connection to the problem of decoding binary random linear codes.
 - 4. Believed to be hard: no polynomial time algorithm is known.

- ► Fundamental in theory.
 - 1. Central problem in learning theory.
 - 2. A special case of the learning with errors (LWE) problem.
 - 3. A close connection to the problem of decoding binary random linear codes.
 - 4. Believed to be hard: no polynomial time algorithm is known.
- ► Many cryptographic applications in practice.
 - 1. User authentication, encryption, MACs, etc..
 - 2. Suitable for light-weight crypto: easy to implement, fast to evaluate, hard to break.
 - 3. Post-quantum cryptography.

Key Parameters

Three important parameters:

- 1. Dimension k
- 2. Noise rate η
- 3. # of samples n

A very common LPN instance

The LPN instance with k = 512, $\eta = 1/8$ and unbounded number of samples.

(Widely adopted for achieving 80-bit security.)

Qian Guo, Thomas Johansson, Carl Löndahl, 5/23

The BKW (Blum, Kalai, and Wasserman) algorithm:

Related Works (1)

The BKW (Blum, Kalai, and Wasserman) algorithm:

► The best asymptotic algorithm with sub-exponential complexity 2^{O(k/log(k))}.

Related Works (1)

The BKW (Blum, Kalai, and Wasserman) algorithm:

- ► The best asymptotic algorithm with sub-exponential complexity 2^{O(k/log(k))}.
- Goal: recover the first bit of s.

Related Works (1)

The BKW (Blum, Kalai, and Wasserman) algorithm:

- ► The best asymptotic algorithm with sub-exponential complexity 2^{O(k/log(k))}.
- Goal: recover the first bit of s.
- ► Main idea:
 - ► Divide the length k vector into a parts, each with size b = [k/a].
 - ► Merge and Sort (called one BKW step)—A trade-off:

$$\begin{array}{rcl} v_1 &=& \langle [\mathbf{r}_1, \mathbf{r}_0], \mathbf{s} \rangle + e_1 \\ v_2 &=& \langle [\mathbf{r}_2, \mathbf{r}_0], \mathbf{s} \rangle + e_2 \\ v_1 + v_2 &=& \langle [\mathbf{r}_1 + \mathbf{r}_2, \mathbf{0}], \mathbf{s} \rangle + e_1 + e_2 \end{array}$$

- Do a-1 BKW steps to zero out the bottom a-1 blocks.
- With certain probability, find an output sample with $\mathbf{r} = [1, 0, \dots, 0]$, and then iterate with fresh LPN samples.

The Levieil and Fouque (LF) algorithm:

Test on the last block by Fast Walsh-Hadamard Transform.

The Levieil and Fouque (LF) algorithm:

Test on the last block by Fast Walsh-Hadamard Transform.

Two concepts about the realization of the BKW step in practice: LF1 (inherited from the BKW paper) and LF2.

► Sort and partition the samples.

Instance: Suppose in a partition, that we have three samples $(\mathbf{r}_1, \mathbf{v}_1), (\mathbf{r}_2, \mathbf{v}_2), (\mathbf{r}_3, \mathbf{v}_3)$.

- ► LF1: In each partition, choose one sample and then add it to the rest in the same partition.
 - Output $(\mathbf{r}_2 + \mathbf{r}_1, v_2 + v_1), (\mathbf{r}_3 + \mathbf{r}_1, v_3 + v_1)$.
 - ► The number of samples reduces about 2^b after each BKW step.
- ► LF2: In each partition, add any pair in the same partition.
 - ► Output $(\mathbf{r}_2 + \mathbf{r}_1, v_2 + v_1), (\mathbf{r}_3 + \mathbf{r}_1, v_3 + v_1), (\mathbf{r}_3 + \mathbf{r}_2, v_3 + v_2).$
 - The number of samples is preserved if we set it to be $3 * 2^b$.

Related Works (3)

Kirchner; Bernstein and Lange (BL):

Kirchner:

Transform the distribution of the secret by Gaussian Elimination:

- ► Collecting all n samples and representing them in the matrix form v = sR + e, where we choose the first k columns of R (denoted by R₀) to be invertible.
- ► Let $\hat{\mathbf{s}} = \mathbf{s}\mathbf{R}_0 + \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix}$ and $\hat{\mathbf{v}} = \mathbf{v} + \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix} \mathbf{R}_0^{-1} \mathbf{R}.$

► Then,

$$\hat{\mathbf{v}} = \begin{bmatrix} \mathbf{0} & \hat{v}_{k+1} & \hat{v}_{k+2} \cdots & \hat{v}_n \end{bmatrix} = \hat{\mathbf{s}} \mathbf{R}_0^{-1} \mathbf{R} + \mathbf{e}.$$
 (1)

► Since R₀⁻¹R is in systematic form, ŝ is then the same as the first k entries of e.

Qian Guo, Thomas Johansson, Carl Löndahl, 8/23

Kirchner; Bernstein and Lange (BL):

Bernstein and Lange (BL):

A Ring-LPN solving algorithm. (Easily applied to general LPN)

 Combine partial guessing and Fast Walsh-Hadamard Transform.

Advantage:

Improves the query and memory complexity.

Until now it is the *best-known method* to solve the LPN problem.

Outline

2 A New Algorithm

Linear Approximation Using Covering Codes Subspace Hypothesis Testing

Results

4 Conclusions and Discussions

New Algorithm

New Algorithm

Covering Coding Methods:

- ► Use a [k", I] linear code C with covering radius d_C to group the columns g_i.
 - ► That is, we rewrite

$$\mathbf{g}_i = \mathbf{c}_i + \mathbf{e}'_i,$$

where \mathbf{c}_i is the nearest codeword in \mathcal{C} , and $wt(\mathbf{e}'_i) \leq d_{\mathcal{C}}$.

- \blacktriangleright The code is characterized by a systematic generator matrix F.
- Use syndrome decoding by a lookup table.

Covering Coding Methods:

- ► Use a [k", I] linear code C with covering radius d_C to group the columns g_i.
 - ► That is, we rewrite

$$\mathbf{g}_i = \mathbf{c}_i + \mathbf{e}'_i,$$

where \mathbf{c}_i is the nearest codeword in \mathcal{C} , and $wt(\mathbf{e}'_i) \leq d_C$.

- \blacktriangleright The code is characterized by a systematic generator matrix F.
- Use syndrome decoding by a lookup table.

<u>A Concatenated Construction</u>: Due to the memory limit (the size of the syndrome table), we use a concatenation of two $[I_1, I_2]$ linear codes.

• Thus, here
$$k'' = 2I_1$$
 and $I = 2I_2$.

Subspace Hypothesis Testing

► Group the samples (g_i, z_i) in sets L(c_i) according to their nearest codewords and define the function f_L(c_i) as

$$f_L(\mathbf{c}_i) = \sum_{(\mathbf{g}_i, z_i) \in L(\mathbf{c}_i)} (-1)^{z_i}$$

- ▶ Define a new function g(u) = f_L(c_i), where u is the information part of c_i and exhausts all the vectors in Z¹₂.
- ► The Walsh transform of g is defined as

$$G(\mathbf{y}) = \sum_{\mathbf{u} \in \mathbb{Z}_2^l} g(\mathbf{u}) (-1)^{\langle \mathbf{y}, \mathbf{u} \rangle}.$$

Here we exhaust all candidates of $\textbf{y} \in \mathbb{Z}_2^{\prime}$ by computing the Walsh transform.

Subspace Hypothesis Testing

► Group the samples (g_i, z_i) in sets L(c_i) according to their nearest codewords and define the function f_L(c_i) as

$$f_L(\mathbf{c}_i) = \sum_{(\mathbf{g}_i, z_i) \in L(\mathbf{c}_i)} (-1)^{z_i}$$

- ▶ Define a new function g(u) = f_L(c_i), where u is the information part of c_i and exhausts all the vectors in Z¹₂.
- ► The Walsh transform of g is defined as

$$G(\mathbf{y}) = \sum_{\mathbf{u} \in \mathbb{Z}_2^l} g(\mathbf{u}) (-1)^{\langle \mathbf{y}, \mathbf{u} \rangle}.$$

Here we exhaust all candidates of $\textbf{y} \in \mathbb{Z}_2^{\prime}$ by computing the Walsh transform.

<u>**Observation:</u>** Given the candidate \mathbf{y} , $G(\mathbf{y})$ is the difference between the number of predicted 0 and the number of predicted 1 for the bit $z_i + \langle \mathbf{y}, \mathbf{u} \rangle$.</u>

Lemma

There exits a unique vector $\mathbf{y} \in \mathbb{Z}_2^l$ s.t.,

$$\langle \mathbf{y}, \mathbf{u} \rangle = \langle \mathbf{s}, \mathbf{c}_i \rangle, \ \forall \mathbf{u} \in \mathbb{Z}_2^{I}.$$

Sketch of Proof.

As
$$\mathbf{c}_i = \mathbf{u}\mathbf{F}$$
, we obtain that $\langle \mathbf{s}, \mathbf{c}_i \rangle = \mathbf{s}\mathbf{F}^{\mathsf{T}}\mathbf{u}^{\mathsf{T}} = \langle \mathbf{s}\mathbf{F}^{\mathsf{T}}, \mathbf{u} \rangle$.

<u>**Observation:</u>** Given the candidate y, G(y) is the difference between the number of predicted 0 and the number of predicted 1 for the bit $z_i + \langle y, u \rangle$.</u>

Lemma

There exits a unique vector $\mathbf{y} \in \mathbb{Z}_2^l$ s.t.,

$$\langle \mathbf{y}, \mathbf{u} \rangle = \langle \mathbf{s}, \mathbf{c}_i \rangle, \ \forall \mathbf{u} \in \mathbb{Z}_2^I.$$

Sketch of Proof.

As
$$\mathbf{c}_i = \mathbf{u}\mathbf{F}$$
, we obtain that $\langle \mathbf{s}, \mathbf{c}_i \rangle = \mathbf{s}\mathbf{F}^{\mathsf{T}}\mathbf{u}^{\mathsf{T}} = \langle \mathbf{s}\mathbf{F}^{\mathsf{T}}, \mathbf{u} \rangle$.

<u>**Observation':**</u> Given the candidate y, G(y) is the difference between the number of predicted 0 and the number of predicted 1 for the bit $z_i + \langle \mathbf{s}, \mathbf{c}_i \rangle$.

A Graphic Illustration

A Graphic Illustration

We can separate the discrepancy \mathbf{e}'_i from \mathbf{uF} , which yields

$$\begin{bmatrix} \mathbf{s_1} \\ \vdots \\ \mathbf{s_{k''}} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} * & * & (\mathsf{uF})_1 & | & * \\ \vdots & \vdots & | & \vdots \\ * & * & | & (\mathsf{uF})_{k''} & | & * \end{bmatrix} = \begin{bmatrix} * \\ \vdots \\ \frac{z_i + e_i + \langle \mathbf{s}, \mathbf{e}'_i \rangle}{*} \\ \vdots \end{bmatrix}.$$

Finally, we note that $\mathbf{sF}^{\mathsf{T}} \in \mathbb{Z}_2^l$, where $\underline{l < k''}$. A simple transformation yields,

$$\begin{bmatrix} (\mathbf{s}\mathbf{F}^{\mathsf{T}})_{\mathbf{1}} \\ \vdots \\ (\mathbf{s}\mathbf{F}^{\mathsf{T}})_{l} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} * & * & u_{\mathbf{1}} & * \\ \vdots & \vdots & \vdots \\ * & * & u_{l} & * \end{bmatrix} = \begin{bmatrix} * \\ \vdots \\ * \\ \frac{z_{i} + \mathbf{e}_{i} + \langle \mathbf{s}, \mathbf{e}_{i} \rangle}{*} \\ \vdots \end{bmatrix}.$$

Finally, we note that $\mathbf{sF}^{\mathsf{T}} \in \mathbb{Z}_2^l$, where $\underline{l < k''}$. A simple transformation yields,

$$\begin{bmatrix} (\mathbf{sF}^{\mathsf{T}})_{\mathbf{1}} \\ \vdots \\ (\mathbf{sF}^{\mathsf{T}})_{l} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} * & * & u_{\mathbf{1}} & * \\ \vdots & \vdots & \vdots & \vdots \\ * & * & u_{l} & * \end{bmatrix} = \begin{bmatrix} * \\ \vdots \\ \frac{z_{i}}{z_{i} + e_{i} + \langle \mathbf{s}, \mathbf{e}_{i}' \rangle} \\ \frac{z_{i}}{z_{i} + e_{i} + \langle \mathbf{s}, \mathbf{e}_{i}' \rangle} \\ \vdots \end{bmatrix}.$$

- ► If right guess, then $z_i + \langle \mathbf{s}, \mathbf{c}_i \rangle$ is equal to $e_i + \langle \mathbf{s}, \mathbf{e}'_i \rangle$.
 - Distinguishable when the bias of $\langle \mathbf{s}, \mathbf{e}'_i \rangle$ is large enough.
- Otherwise: random.

Finally, we note that $\mathbf{sF}^{\mathsf{T}} \in \mathbb{Z}_2^l$, where $\underline{l < k''}$. A simple transformation yields,

$$\begin{bmatrix} (\mathbf{sF}^{\mathsf{T}})_{\mathbf{1}} \\ \vdots \\ (\mathbf{sF}^{\mathsf{T}})_{l} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} * & * & u_{\mathbf{1}} & * \\ \vdots & \vdots & \vdots & \vdots \\ * & * & u_{l} & * \end{bmatrix} = \begin{bmatrix} * \\ \vdots \\ \frac{z_{i}}{z_{i} + e_{i} + \langle \mathbf{s}, \mathbf{e}_{i}' \rangle} \\ \frac{z_{i}}{z_{i} + e_{i} + \langle \mathbf{s}, \mathbf{e}_{i}' \rangle} \\ \vdots \end{bmatrix}.$$

- ► If right guess, then $z_i + \langle \mathbf{s}, \mathbf{c}_i \rangle$ is equal to $e_i + \langle \mathbf{s}, \mathbf{e}'_i \rangle$.
 - Distinguishable when the bias of $\langle \mathbf{s}, \mathbf{e}'_i \rangle$ is large enough.
- Otherwise: random.

Advantage: l < k''.

Outline

Introduction

2 A New Algorithm

3 Results

Complexity Applications

A Conclusions and Discussions

The complexity consists of three parts:

- 1. Inner complexity Cone-iteration.
 - Adding the complexity of each step.
- 2. Guessing factor F_g .
 - ► Knowing the probability that w₀ ones occur in the top k' k'' dimensional vector.
- 3. Testing factor F_t .
 - ► Knowing the probability that the subspace hypothesis testing succeeds for all different information patterns, after presetting a bias eset.

Guessing part k' - k''

Code length k''

BKW part, length tb

Complexity Formula

1. $C_{one-iteration} = \log_2(C_1 + C_2 + C_3 + C_4 + C_5);$

- C_1 is the complexity of Gaussian Elimination.
- C_2 is the complexity of t BKW steps.
- C_3 is the complexity of partial guessing.
- C₄ is the complexity of syndrome decoding.
- C_5 is the complexity of subspace hypothesis testing.

2.
$$F_g = -\log_2(P(w_0, k' - k''));^1$$

¹Let P(w, m) be the probability of having at most w errors in m positions, i.e.,

$$P(w, m) = \sum_{i=0}^{w} (1-\eta)^{m-i} \eta^{i} \binom{m}{i}.$$

• $F_t = -\log_2(P(c, k''))$, where c is the largest weight of s that the bias² $\epsilon(c)$ is not smaller than ϵ_{set} .

²In the proceeding's version, we estimate $\epsilon(c)$ as ϵ'^c , where $\epsilon' = 1 - \frac{2d_c}{k'}$. Assume for a code with optimal covering, then we compute the bias accurately as follows ([Vaudenay] Private communication):

$$\Pr\left[\left\langle \mathbf{s}, \mathbf{e}'_i \right\rangle = 1 | wt(\mathbf{s}) = c\right] = \frac{1}{S(k^{\prime\prime}, d_{\mathcal{C}})} \sum_{i \leq d_{\mathcal{C}}, i \text{ odd}} \binom{c}{i} S(k^{\prime\prime} - c, d_{\mathcal{C}} - i),$$

where $S(k'', d_C)$ is the number of k''-bit strings with weight at most d_C . This exact value is 4-5 times larger on the instance (512, 1/8).

Qian Guo, Thomas Johansson, Carl Löndahl, 17/23

Theorem

The bit complexity (in \log_2) of the new algorithm is,

$$C = C_{one-iteration} + F_g + F_t \tag{1}$$

under the condition that³ $N \geq \frac{4 \ln 2 \cdot l}{\left(\epsilon_{BKW} \cdot \epsilon_{set}\right)^2}$, where $\epsilon_{BKW} = (1 - 2\eta)^{2^t}$.

- ► Here *N* is the number of samples after the *t* BKW steps.
- ► Using this setting, the error probability P_e is less than 2⁻¹⁰([Selçuk08]⁴).

 $[\]frac{3}{10}$ In our proceeding's version, we use a too optimistic estimation on N, i.e., using a constant factor before the term $1/\epsilon^2$. This rough estimation also appears in the previous works.

⁴[Selçuk08] Ali Aydin Selçuk, On Probability of Success in Linear and Differential Cryptanalysis, Journal of cryptology, 2008.

Complexity Formula for Concatenated Construction

- $C_{one-iteration} = \log_2(C_1 + C_2 + C_3 + C_4^{*5} + C_5)$
- Formula F_g is the same.
- ▶ Formula F_t changes.

•

- ► Accumulate the probability of all the »good « pair⁶, denoted by Pr_t.
 - ► Important: wt(s₁) and wt(s₂).

$$Pr_{t} = \sum_{\substack{(\mathbf{s}_{1},\mathbf{s}_{2}) \in \mathbb{Z}_{2}^{k''}, \text{good}}} (1-\eta)^{h_{1} - wt(\mathbf{s}_{1})} \eta^{wt(\mathbf{s}_{1})} \cdot (1-\eta)^{h_{1} - wt(\mathbf{s}_{2})} \eta^{wt(\mathbf{s}_{2})}.$$

• The testing factor F_t is equal to $-\log_2(Pr_t)$.

⁶ For a possible secret vector (s_1, s_2) in $\mathbb{Z}_2^{k''}$, if the corresponding $\epsilon_{(s_1, s_2)}$ is larger than a preset bias ϵ_{set} , then we call the pair (s_1, s_2) a **sgood** are.

⁵Since we use a concatenated code, the complexity formula of the syndrome decoding step differs and we use C_4^* to denote the new complexity of this step.

Complexity in bit operation of the LPN instance with parameters (512, 1/8):

Algorithm	Queries	Memory	Time
Levieil-Fouque	75.7 ⁷	84.8	87.5
Bernstein-Lange	69.6	78.6	85.8
New algorithm(LF1)	65.0	74.0	80.7
New algorithm(LF2) ⁸	63.6	72.6	79.7

⁷ The complexity is measured by log₂.

⁸ It is the complexity of the following instance: t = 5, b = 62, using the concatenation of two [90, 30] linear codes, w₀ = 2, $\epsilon_{BKW} = 2^{-13.28}$, $\epsilon_{set} = 2^{-14.78}$, $C_{one-iteration} = 76.08$, $F_g = 1.09$ and $F_t = 2.55$.

Qian Guo, Thomas Johansson, Carl Löndahl, 20/23

- 1. We have proposed a new algorithm to solve the (512, 1/8)LPN instance in $2^{79.7}$ bit operations $(2^{74}$ word operations with word length 128). Thus, we recommend that the cryptographic schemes employing this instance for 80-bit security to use larger parameters.
 - ► HB family (HB⁺, HB[#], etc.)
 - ► LPN-C.
 - ► Others.

⁹ The reducible case of Lapin designed for 80-bit security is broken within about 2⁷⁰ bit operations: [GJL14] Qian Guo, Thomas Johansson, Carl Löndahl: A New Algorithm for Solving Ring-LPN with a Reducible Polynomial. CoRR abs/1409.0472 (2014).

- 1. We have proposed a new algorithm to solve the (512, 1/8)LPN instance in $2^{79.7}$ bit operations $(2^{74}$ word operations with word length 128). Thus, we recommend that the cryptographic schemes employing this instance for 80-bit security to use larger parameters.
 - ► HB family (HB⁺, HB[#], etc.)
 - ► LPN-C.
 - ► Others.
- 2. Better attack for Lapin authentication protocol.
 - ► The irreducible⁹ Ring-LPN instance (532, 1/8) employed in Lapin can be solved within 2⁸² bit operations using this generic algorithm.

⁹ The reducible case of Lapin designed for 80-bit security is broken within about 2⁷⁰ bit operations: [GJL14] Qian Guo, Thomas Johansson, Carl Löndahl: A New Algorithm for Solving Ring-LPN with a Reducible Polynomial. CoRR abs/1409.0472 (2014).

Outline

Introduction The LPN Problem Motivation Related Works

2 A New Algorithm Linear Approximation Using Covering Codes Subspace Hypothesis Testing

B Results Comple

Applications

4 Conclusions and Discussions

Conclusions and Future Works:

- 1. Having introduced two novel techniques—linear approximation employing covering codes together with a subspace hypothesis testing technique—to form a new generalized-BKW-type LPN solving algorithm.
 - The new algorithm beats the best-known algorithm in query, memory and time complexity.
- 2. The novel idea inside may also be helpful to solve some other similar problems (e.g., LWE, ISD, etc.).

Conclusions and Future Works:

- 1. Having introduced two novel techniques—linear approximation employing covering codes together with a subspace hypothesis testing technique—to form a new generalized-BKW-type LPN solving algorithm.
 - The new algorithm beats the best-known algorithm in query, memory and time complexity.
- 2. The novel idea inside may also be helpful to solve some other similar problems (e.g., LWE, ISD, etc.).

An Open Problem:

Improve the asymptotic behavior of the BKW algorithm using the covering coding idea.

Conclusions and Future Works:

- 1. Having introduced two novel techniques—linear approximation employing covering codes together with a subspace hypothesis testing technique—to form a new generalized-BKW-type LPN solving algorithm.
 - The new algorithm beats the best-known algorithm in query, memory and time complexity.
- 2. The novel idea inside may also be helpful to solve some other similar problems (e.g., LWE, ISD, etc.).

Acknowledgement: We would like to thank Prof. Serge Vaudenay for his helpful comments that improve our work.

Thank you for your attention!

Questions?

Qian Guo, Thomas Johansson, Carl Löndahl, 23/23

A Soft-Testing Version: Changing the formula:

- ► A Taylor approximation of Log-likelihood ratio (LLR) testing.
- The complexity changes little.