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Learning Parity with Noise(LPN)

We have access to an oracle (LPN oracle):

The LPN oracle with parameters (k , η):

1. Picks a secret s in Zk
2 .

2. Randomly picks r from Zk
2 .

3. Picks a 'noise' e ← Berη (i.e. e = 0 w.p. 1− η and 1 w.p. η).

4. Outputs the pair (r, v = 〈r, s〉+ e) as a sample.

The goal (informal):

Find s after collecting enough samples.
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Motivation

I Fundamental in theory.

1. Central problem in learning theory.
2. A special case of the learning with errors (LWE) problem.
3. A close connection to the problem of decoding binary random

linear codes.
4. Believed to be hard: no polynomial time algorithm is known.

I Many cryptographic applications in practice.

1. User authentication, encryption, MACs, etc..
2. Suitable for light-weight crypto: easy to implement, fast to

evaluate, hard to break.
3. Post-quantum cryptography.
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Key Parameters

Three important parameters:

1. Dimension k

2. Noise rate η

3. # of samples n

A very common LPN instance

The LPN instance with k = 512, η = 1/8 and unbounded number
of samples.

(Widely adopted for achieving 80-bit security.)
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Related Works (1)

The BKW (Blum, Kalai, and Wasserman) algorithm:

I The best asymptotic algorithm with sub-exponential
complexity 2O(k/ log(k)).

I Goal: recover the �rst bit of s.

I Main idea:
I Divide the length k vector into a parts, each with size

b = dk/ae.
I Merge and Sort (called one BKW step)�A trade-o�:

v1 = 〈[r1, r0], s〉+ e1
v2 = 〈[r2, r0], s〉+ e2

v1 + v2 = 〈[r1 + r2, 0], s〉+ e1 + e2
I Do a− 1 BKW steps to zero out the bottom a− 1 blocks.
I With certain probability, �nd an output sample with

r = [1, 0, . . . , 0], and then iterate with fresh LPN samples.
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Related Works (2)

The Levieil and Fouque (LF) algorithm:

Test on the last block by Fast Walsh-Hadamard Transform.

Two concepts about the realization of the BKW step in practice:
LF1 (inherited from the BKW paper) and LF2.

I Sort and partition the samples.

Instance: Suppose in a partition, that we have three
samples (r1, v1),(r2, v2),(r3, v3).

I LF1: In each partition, choose one sample and then add it to
the rest in the same partition.

I Output (r2 + r1, v2 + v1),(r3 + r1, v3 + v1).
I The number of samples reduces about 2b after each BKW step.

I LF2: In each partition, add any pair in the same partition.
I Output (r2 + r1, v2 + v1),(r3 + r1, v3 + v1), (r3 + r2, v3 + v2).
I The number of samples is preserved if we set it to be 3 ∗ 2b.
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Related Works (3)

Kirchner; Bernstein and Lange (BL):

Kirchner:

Transform the distribution of the secret by Gaussian Elimination:

I Collecting all n samples and representing them in the matrix
form v = sR+ e, where we choose the �rst k columns of R
(denoted by R0) to be invertible.

I Let ŝ = sR0 +
[
v1 v2 · · · vk

]
and

v̂ = v +
[
v1 v2 · · · vk

]
R−10 R.

I Then,

v̂ =
[
0 v̂k+1 v̂k+2 · · · v̂n

]
= ŝR−10 R+ e. (1)

I Since R−10 R is in systematic form, ŝ is then the same as the
�rst k entries of e.

Qian Guo, Thomas Johansson, Carl Löndahl, 8 / 23



Related Works (3)

Kirchner; Bernstein and Lange (BL):

Bernstein and Lange (BL):

A Ring-LPN solving algorithm. (Easily applied to general LPN)

I Combine partial guessing and Fast Walsh-Hadamard
Transform.

Advantage:

Improves the query and memory complexity.

Until now it is the best-known method to solve the LPN problem.

Qian Guo, Thomas Johansson, Carl Löndahl, 8 / 23
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New Algorithm

Main Steps:

1. Gaussian Elimination.

2. The BKW step.

3. Partial secret guessing.
I Try every vector with

weight less than w0.

4. Decoding a covering code.

5. Subspace hypothesis testing.

Guessing part k ′ − k ′′

Rows
[1, k]

Code length k ′′

BKW part, length tb

Length k vector r
(r, v)

Length k ′′ vector g
(g, z)
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Linear Approximation Using Covering Codes

Covering Coding Methods:

I Use a [k ′′, l ] linear code C with covering radius dC to group
the columns gi .

I That is, we rewrite
gi = ci + e′i ,

where ci is the nearest codeword in C, and wt(e′i ) ≤ dC .
I The code is characterized by a systematic generator matrix F.
I Use syndrome decoding by a lookup table.

A Concatenated Construction: Due to the memory limit (the size of
the syndrome table), we use a concatenation of two [l1, l2] linear
codes.

I Thus, here k
′′
= 2l1 and l = 2l2.
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Subspace Hypothesis Testing

I Group the samples (gi , zi ) in sets L(ci ) according to their
nearest codewords and de�ne the function fL(ci ) as

fL(ci ) =
∑

(gi ,zi )∈L(ci )

(−1)zi .

I De�ne a new function g(u) = fL(ci ), where u is the
information part of ci and exhausts all the vectors in Zl

2.
I The Walsh transform of g is de�ned as

G (y) =
∑
u∈Zl

2

g(u)(−1)〈y,u〉.

Here we exhaust all candidates of y ∈ Zl
2 by computing the

Walsh transform.

Observation: Given the candidate y, G (y) is the di�erence
between the number of predicted 0 and the number of predicted 1
for the bit zi + 〈y,u〉.
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Subspace Hypothesis Testing (Cont'd)

Lemma

There exits a unique vector y ∈ Zl
2 s.t.,

〈y,u〉 = 〈s, ci 〉 , ∀u ∈ Zl
2.

Sketch of Proof.

As ci = uF, we obtain that 〈s, ci 〉 = sFTuT = 〈sFT,u〉 .

Observation: Given the candidate y, G (y) is the di�erence
between the number of predicted 0 and the number of predicted 1
for the bit zi + 〈y,u〉.
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A Graphic Illustration
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A Graphic Illustration (Cont'd)

Finally, we note that sFT ∈ Zl
2, where l < k ′′. A simple

transformation yields,
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I If right guess, then zi + 〈s, ci 〉 is equal to ei + 〈s, e′i 〉.
I Distinguishable when the bias of 〈s, e′i 〉 is large enough.

I Otherwise: random.

Advantage: l < k ′′.
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Complexity

The complexity consists of three
parts:

1. Inner complexity Cone−iteration.
I Adding the complexity of each

step.

2. Guessing factor Fg .
I Knowing the probability that w0

ones occur in the top k ′ − k ′′

dimensional vector.

3. Testing factor Ft .
I Knowing the probability that the

subspace hypothesis testing
succeeds for all di�erent
information patterns, after
presetting a bias εset .

Guessing part k ′ − k ′′

Code length k ′′

BKW part, length tb

Qian Guo, Thomas Johansson, Carl Löndahl, 15 / 23



Complexity Formula

1. Cone−iteration = log2(C1 + C2 + C3 + C4 + C5);
I C1 is the complexity of Gaussian Elimination.
I C2 is the complexity of t BKW steps.
I C3 is the complexity of partial guessing.
I C4 is the complexity of syndrome decoding.
I C5 is the complexity of subspace hypothesis testing.

2. Fg = − log2(P(w0, k
′ − k ′′));1

1
Let P(w,m) be the probability of having at most w errors in m positions, i.e.,

P(w,m) =
w∑
i=0

(1− η)m−i
η
i
(
m

i

)
.

Qian Guo, Thomas Johansson, Carl Löndahl, 16 / 23



Complexity Formula (Cont'd)

I Ft = − log2(P(c, k
′′)), where c is the largest weight of s that

the bias2 ε(c) is not smaller than εset .

2
In the proceeding's version, we estimate ε(c) as ε′c , where ε′ = 1− 2dc

k′′ . Assume for a code with

optimal covering, then we compute the bias accurately as follows ([Vaudenay] Private communication):

Pr
[〈

s, e
′
i

〉
= 1|wt(s) = c

]
=

1

S(k′′, dC)

∑
i≤dC ,i odd

(
c

i

)
S(k′′ − c, dC − i),

where S(k′′, dC) is the number of k′′-bit strings with weight at most dC . This exact value is 4− 5 times
larger on the instance (512, 1/8).

Qian Guo, Thomas Johansson, Carl Löndahl, 17 / 23



Complexity Formula (Cont'd)

Theorem

The bit complexity (in log
2
) of the new algorithm is,

C = Cone−iteration + Fg + Ft (1)

under the condition that3 N ≥ 4 ln 2 · l
(εBKW · εset)2

, where εBKW = (1− 2η)2
t

.

I Here N is the number of samples after the t BKW steps.

I Using this setting, the error probability Pe is less than
2−10([Selçuk08]4).

3
In our proceeding's version, we use a too optimistic estimation on N, i.e., using a constant factor

before the term 1/ε2. This rough estimation also appears in the previous works.
4
[Selçuk08] Ali Aydin Selçuk, On Probability of Success in Linear and Di�erential Cryptanalysis,

Journal of cryptology, 2008.
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Complexity Formula for Concatenated Construction

I Cone−iteration = log2(C1 + C2 + C3 + C ∗4
5 + C5)

I Formula Fg is the same.

I Formula Ft changes.
I Accumulate the probability of all the �good� pair6, denoted

by Prt .
I Important: wt(s1) and wt(s2).
I

Prt =
∑

(s1,s2)∈Zk′′
2 ,good

(1−η)l1−wt(s1)ηwt(s1) ·(1−η)l1−wt(s2)ηwt(s2).

I The testing factor Ft is equal to − log
2
(Prt).

5
Since we use a concatenated code, the complexity formula of the syndrome decoding step di�ers

and we use C∗4 to denote the new complexity of this step.
6
For a possible secret vector (s1, s2) in Zk′′

2 , if the corresponding ε(s1,s2)
is larger than a preset bias

εset , then we call the pair (s1, s2) a �good� pair.

Qian Guo, Thomas Johansson, Carl Löndahl, 19 / 23



Results

Complexity in bit operation of the LPN instance with
parameters (512, 1/8):

Algorithm Queries Memory Time

Levieil-Fouque 75.77 84.8 87.5
Bernstein-Lange 69.6 78.6 85.8
New algorithm(LF1) 65.0 74.0 80.7
New algorithm(LF2)8 63.6 72.6 79.7

7
The complexity is measured by log2.

8
It is the complexity of the following instance: t = 5, b = 62, using the concatenation of two [90, 30]

linear codes,w0 = 2, εBKW = 2−13.28, εset = 2−14.78, Cone−iteration = 76.08, Fg = 1.09 and Ft = 2.55.

Qian Guo, Thomas Johansson, Carl Löndahl, 20 / 23



Applications

1. We have proposed a new algorithm to solve the (512, 1/8)
LPN instance in 279.7 bit operations (274 word operations with
word length 128). Thus, we recommend that the
cryptographic schemes employing this instance for 80-bit
security to use larger parameters.

I HB family (HB+, HB#, etc.)
I LPN-C.
I Others.

2. Better attack for Lapin authentication protocol.
I The irreducible9 Ring-LPN instance (532, 1/8) employed in

Lapin can be solved within 282 bit operations using this generic
algorithm.

9
The reducible case of Lapin designed for 80-bit security is broken within about 270 bit operations:

[GJL14] Qian Guo, Thomas Johansson, Carl Löndahl: A New Algorithm for Solving Ring-LPN with a
Reducible Polynomial. CoRR abs/1409.0472 (2014).
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security to use larger parameters.

I HB family (HB+, HB#, etc.)
I LPN-C.
I Others.

2. Better attack for Lapin authentication protocol.
I The irreducible9 Ring-LPN instance (532, 1/8) employed in

Lapin can be solved within 282 bit operations using this generic
algorithm.

9
The reducible case of Lapin designed for 80-bit security is broken within about 270 bit operations:
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Conclusions and Discussions

Conclusions and Future Works:

1. Having introduced two novel techniques�linear approximation
employing covering codes together with a subspace hypothesis
testing technique�to form a new generalized-BKW-type LPN
solving algorithm.

I The new algorithm beats the best-known algorithm in query,
memory and time complexity.

2. The novel idea inside may also be helpful to solve some other
similar problems (e.g., LWE, ISD, etc.).
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I The new algorithm beats the best-known algorithm in query,
memory and time complexity.

2. The novel idea inside may also be helpful to solve some other
similar problems (e.g., LWE, ISD, etc.).

An Open Problem:

Improve the asymptotic behavior of the BKW algorithm using the
covering coding idea.
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Thank you

Thank you for your attention!

Questions?
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Testing Using Soft-Information

A Soft-Testing Version: Changing the formula:

Hard Version

fL(ci ) =
∑

(gi ,zi )∈L(ci )

(−1)zi

Soft Version

f sL (ci ) =
∑

(gi ,zi )∈L(ci )

(−1)zi ·εwt(e′i )

What is εwt(e′i )? ε
wt(e′i ).

I A Taylor approximation of Log-likelihood ratio (LLR) testing.

I The complexity changes little.
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